39 resultados para Carbohydrates

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important goal of the athlete's everyday diet is to provide the muscle with substrates to fuel the training programme that will achieve optimal adaptation for performance enhancements. In reviewing the scientific literature on post-exercise glycogen storage since 1991, the following guidelines for the training diet are proposed. Athletes should aim to achieve carbohydrate intakes to meet the fuel requirements of their training programme and to optimize restoration of muscle glycogen stores between workouts. General recommendations can be provided, preferably in terms of grams of carbohydrate per kilogram of the athlete's body mass, but should be fine-tuned with individual consideration of total energy needs, specific training needs and feedback from training performance. It is valuable to choose nutrient-rich carbohydrate foods and to add other foods to recovery meals and snacks to provide a good source of protein and other nutrients. These nutrients may assist in other recovery processes and, in the case of protein, may promote additional glycogen recovery when carbohydrate intake is suboptimal or when frequent snacking is not possible. When the period between exercise sessions is  <8 h, the athlete should begin carbohydrate intake as soon as practical after the first workout to maximize the effective recovery time between sessions. There may be some advantages in meeting carbohydrate intake targets as a series of snacks during the early recovery phase, but during longer recovery periods (24 h) the athlete should organize the pattern and timing of carbohydrate-rich meals and snacks according to what is practical and comfortable for their individual situation. Carbohydrate-rich foods with a moderate to high glycaemic index provide a readily available source of carbohydrate for muscle glycogen synthesis, and should be the major carbohydrate choices in recovery meals. Although there is new interest in the recovery of intramuscular triglyceride stores between training sessions, there is no evidence that diets which are high in fat and restricted in carbohydrate enhance training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and rapid method for the analysis of carbohydrates in heroin samples by capillary electrophoresis utilizing a borate complexation method is described. Separations were performed using an uncoated fused silica capillary, 50 cm × 50 mm I.D. × 360 mm O.D. with an effective separation length of 9 cm. The system was run at 60°C with an applied voltage of -8 kilovolts. Injection of each sample was for 1 sec at -50 mbar. UV detection was employed with the wavelength set at 195 nm. The background electrolyte consisted of 65 mM borate, pH 12.0. Samples and standards were prepared in the run buffer containing 2 mg/mL of mannose as an internal standard. Under these conditions a test mixture containing glucose, sucrose, lactose, mannitol and mannose as an internal standard was resolved within 5 min. The method was used to determine the concentration of carbohydrates in heroin seizure samples and synthetic heroin samples. The results were in good agreement with the reported values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biogenic aerosols play important roles in atmospheric chemistry physics, the biosphere, climate, and public health. Here, we show that fungi which actively discharge their spores with liquids into the air, in particular actively wet spore discharging Ascomycota (AAM) and actively wet spore discharging Basidiomycota (ABM), are a major source of primary biogenic aerosol particles and components. We present the first estimates for the global average emission rates of fungal spores.

Measurement results and budget calculations based on investigations in Amazonia (Balbina, Brazil, July 2001) indicate that the spores of AAM and ABM may account for a large proportion of coarse particulate matter in tropical rainforest regions during the wet season (0.7–2.3 μg m−3). For the particle diameter range of 1–10 μm, the estimated proportions are ~25% during day-time, ~45% at night, and ~35% on average. For the sugar alcohol mannitol, the budget calculations indicate that it is suitable for use as a molecular tracer for actively wet discharged basidiospores (ABS). ABM emissions seem to account for most of the atmospheric abundance of mannitol (10–68 ng m−3), and can explain the observed diurnal cycle (higher abundance at night). ABM emissions of hexose carbohydrates might also account for a significant proportion of glucose and fructose in air particulate matter (7–49 ng m−3), but the literature-derived ratios are not consistent with the observed diurnal cycle (lower abundance at night). AAM emissions appear to account for a large proportion of potassium in air particulate matter over tropical rainforest regions during the wet season (17–43 ng m−3), and they can also explain the observed diurnal cycle (higher abundance at night). The results of our investigations and budget calculations for tropical rainforest aerosols are consistent with measurements performed at other locations.

Based on the average abundance of mannitol reported for extratropical continental boundary layer air (~25 ng m−3), we have also calculated a value of ~17 Tg yr−1 as a first estimate for the global average emission rate of ABS over land surfaces, which is consistent with the typically observed concentrations of ABS (~10³–104 m−3; ~0.1–1 μg m−3). The global average atmospheric abundance and emission rate of total fungal spores, including wet and dry discharged species, are estimated to be higher by a factor of about three, i.e. 1 μg m−3 and ~50 Tg yr−1. Comparisons with estimated rates of emission and formation of other major types of organic aerosol (~47 Tg yr−1 of anthropogenic primary organic aerosol; 12–70 Tg yr−1 of secondary organic aerosol) indicate that emissions from fungi should be taken into account as a significant global source of organic aerosol. The effects of fungal spores and related chemical components might be particularly important in tropical regions, where both physicochemical processes in the atmosphere and biological activity at the Earth's surface are particularly intense, and where the abundance of fungal spores and related chemical compounds are typically higher than in extratropical regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Low glycemic index (GI) carbohydrates have been linked to increased satiety. The drive to eat may be mediated by postprandial changes in glucose, insulin and gut peptides.
Objective
: To investigate the effect of a low and a high GI diet on day-long (10 h) blood concentrations of glucose, insulin, cholecystokinin (CCK) and ghrelin (GHR).
Design: Subjects (n¼12) consumed a high and a low GI diet in a randomized, crossover design, consisting of four meals that were matched for macronutrients and fibre, and differed only in carbohydrate quality (GI). Blood was sampled every 30–60 min and assayed for glucose, insulin, CCK and GHR.
Results: The high GI diet resulted in significantly higher glucose and insulin mean incremental areas under the curve (IAUC, P¼0.027 and P¼0.001 respectively). CCK concentration was 59% higher during the first 7 h of the low GI diet (394±95 pmol/l min) vs the high GI diet (163±38 pmol/l min, P¼0.046), but there was no difference over 10 h (P¼0.224). GHR concentration was inversely correlated with insulin concentration (Pearson correlation 0.48, P¼0.007), but did not differ significantly between the low and high GI diets.
Conclusions: Mixed meals of lower GI are associated with lower day-long concentrations of glucose and insulin, and higher CCK after breakfast, morning tea and lunch. This metabolic profile could mediate differences in satiety and hunger seen in some, but not all, studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aim:  Reduction of short-chain poorly absorbed carbohydrates (FODMAPs) in the diet reduces symptoms of irritable bowel syndrome (IBS). In the present study, we aimed to compare the patterns of breath hydrogen and methane and symptoms produced in response to diets that differed only in FODMAP content.
Methods:  Fifteen healthy subjects and 15 with IBS (Rome III criteria) undertook a single-blind, crossover intervention trial involving consuming provided diets that were either low (9 g/day) or high (50 g/day) in FODMAPs for 2 days. Food and gastrointestinal symptom diaries were kept and breath samples collected hourly over 14 h on day 2 of each diet.
Results:  Higher levels of breath hydrogen were produced over the entire day with the high FODMAP diet for healthy volunteers (181 ± 77 ppm.14 h vs 43 ± 18; mean ± SD P < 0.0001) and patients with IBS (242 ± 79 vs 62 ± 23; P < 0.0001), who had higher levels during each dietary period than the controls (P < 0.05). Breath methane, produced by 10 subjects within each group, was reduced with the high FODMAP intake in healthy subjects (47 ± 29 vs 109 ± 77; P = 0.043), but was not different in patients with IBS (126 ± 153 vs 86 ± 72). Gastrointestinal symptoms and lethargy were significantly induced by the high FODMAP diet in patients with IBS, while only increased flatus production was reported by healthy volunteers.
Conclusions:  Dietary FODMAPs induce prolonged hydrogen production in the intestine that is greater in IBS, influence the amount of methane produced, and induce gastrointestinal and systemic symptoms experienced by patients with IBS. The results offer mechanisms underlying the efficacy of the low FODMAP diet in IBS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spores and related chemical compounds from actively spore-discharging Ascomycota (AAM) and actively spore-discharging Basidiomycota (ABM) are primary biogenic components of air particulate matter (characteristic size range 1–10 μm). Measurement results and budget calculations based on investigations in Amazonia (Balbina, Brazil, July 2001) indicate that the forcible discharge of fungal spores may account for a large proportion of coarse air particulate matter in tropical rainforest regions during the wet season. For the particle diameter range of 1–10 μm, the estimated proportions are ~25% during day-time, ~45% at night, and ~35% on average. For the sugar alcohol, mannitol, the budget calculations indicate that it is suitable for use as a molecular tracer for actively discharged basidiospores (ABS), and that the literature-derived emission ratio of about 5 pg per ABS may be taken as a representative average. ABM emissions may account for most of the atmospheric abundance of mannitol, and can explain the observed diurnal cycle (higher abundance at night). ABM emissions of hexose carbohydrates might also account for a significant proportion of glucose and fructose in air particulate matter, but the literature-derived ratios are not consistent with the observed diurnal cycle (lower abundance at night). AAM emissions appear to account for a large proportion of potassium in air particulate matter over tropical rainforest regions during the wet season, and they can also explain the observed diurnal cycle (higher abundance at night). The results of our investigations and budget calculations for tropical rainforest aerosols are consistent with measurements performed at other locations.

Based on the average abundance of mannitol in particulate matter, which is consistent with the above emission ratio and the observed abundance of ABS, we have also calculated a value of ~17 Tg yr−1 as a first estimate for the global average emission rate of ABS over land surfaces. Comparisons with estimated rates of emission and formation of other major types of organic aerosol (~47 Tg yr−1 of anthropogenic primary organic aerosol; 12–70 Tg yr−1 of secondary organic aerosol) indicate that emissions from actively spore-discharging fungi should be taken into account as a significant source of organic aerosol. Their effects might be particularly important in tropical regions, where both physicochemical processes in the atmosphere and biological activity at the Earth's surface are particularly intense, and where the abundance of fungal spores and related chemical compounds are typically higher than in extratropical regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-carbohydrate diets have re-emerged into the public spotlight and are enjoying a high degree of popularity as people search for a solution to the population's ever-expanding waistline. The current evidence though indicates that low-carbohydrate diets present no significant advantage over more traditional energy-restricted diets on long-term weight loss and maintenance. Furthermore, a higher rate of adverse side-effects can be attributed to low-carbohydrate dieting approaches. Short-term efficacy of low-carbohydrate diets has been demonstrated for some lipid parameters of cardiovascular risk and measures of glucose control and insulin sensitivity, but no studies have ascertained if these effects represent a change in primary outcome measures. Low-carbohydrate diets are likely effective and not harmful in the short term and may have therapeutic benefits for weight-related chronic diseases although weight loss on such a program should be undertaken under medical supervision. While new commercial incarnations of the low-carbohydrate diet are now addressing overall dietary adequacy by encouraging plenty of high-fibre vegetables, fruit, low-glycaemic-index carbohydrates and healthier fat sources, this is not the message that reaches the entire public nor is it the type of diet adopted by many people outside of the world of a well-designed clinical trial. Health effects of long-term ad hoc restriction of inherently beneficial food groups without a concomitant reduction in body weight remains unanswered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are 3 distinct yet closely integrated processes that operate together to satisfy the energy requirements of muscle. The anaerobic energy system is divided into alactic and lactic components, referring to the processes  involved in the splitting of the stored phosphagens, ATP and  phosphocreatine (PCr), and the nonaerobic breakdown of carbohydrate to lactic acid through glycolysis. The aerobic energy system refers to the combustion of carbohydrates and fats in the presence of oxygen. The anaerobic pathways are capable of regenerating ATP at high rates yet are limited by the amount of energy that can be released in a single bout of intense exercise. In contrast, the aerobic system has an enormous capacity yet is somewhat hampered in its ability to delivery energy quickly. The focus of this review is on the interaction and relative contribution of the energy systems during single bouts of maximal exercise. A particular emphasis has been placed on the role of the aerobic energy system during high intensity exercise.

Attempts to depict the interaction and relative contribution of the energy systems during maximal exercise first appeared in the 1960s and 1970s. While insightful at the time, these representations were based on calculations of anaerobic energy release that now appear questionable. Given repeated reproduction over the years, these early attempts have lead to 2 common misconceptions in the exercise science and coaching professions. First, that the energy systems respond to the demands of intense exercise in an almost sequential manner, and secondly, that the aerobic system responds slowly to these energy demands, thereby playing little role in determining performance over short durations. More recent research suggests that energy is derived from each of the energy-producing pathways during almost all exercise activities. The duration of maximal exercise at which equal contributions are derived from the anaerobic and aerobic energy systems appears to occur between 1 to 2 minutes and most probably around 75 seconds, a time that is considerably earlier than has traditionally been suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extrusion cooking, as a multi-step, multi-functional and thermal/mechanical process, has permitted a large number of food applications. Effects of extrusion cooking on nutritional quality are ambiguous. Beneficial effects include destruction of antinutritional factors, gelatinisation of starch, increased soluble dietary fibre and reduction of lipid oxidation. On the other hand, Maillard reactions between protein and sugars reduce the nutritional value of the protein, depending on the raw material types, their composition and process conditions. Heat-labile vitamins may be lost to varying extents. Changes in proteins and amino acid profile, carbohydrates, dietary fibre, vitamins, mineral content and some non-nutrient healthful components of food may be either beneficial or deleterious. The present paper reviews the mechanisms underlying these changes, as well as the influence of process variables and feed characteristics. Mild extrusion conditions (high moisture content, low residence time, low temperature) improve the nutritional quality, while high extrusion temperatures (200 °C), low moisture contents (<15%) and/or improper formulation (e.g. presence of high-reactive sugars) can impair nutritional quality adversely. To obtain a nutritionally balanced extruded product, careful control of process parameters is essential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-carbohydrate diets for weight loss are receiving a lot of attention of late. Reasons for this interest include a plethora of low-carbohydrate diet books, the over-sensationalism of these diets in the media and by celebrities, and the promotion of these diets in fitness centres and health clubs. The re-emergence of low-carbohydrate diets into the spotlight has lead many people in the general public to question whether carbohydrates are inherently 'bad' and should be limited in the diet. Although low-carbohydrate diets were popular in the 1970s they have resurged again yet little scientific fact into the true nature of how these diets work or, more importantly, any potential for serious long-term health risks in adopting this dieting practice appear to have reached the mainstream literature. Evidence abounds that low-carbohydrate diets present no significant advantage over more traditional energy-restricted, nutritionally balanced diets both in terms of weight loss and weight maintenance. Studies examining the efficacy of using low-carbohydrate diets for long-term weight loss are few in number, however few positive benefits exist to promote the adoption of carbohydrate restriction as a realistic, and more importantly, safe means of dieting. While short-term carbohydrate restriction over a period of a week can result in a significant loss of weight (albeit mostly from water and glycogen stores), of serious concern is what potential exists for the following of this type of eating plan for longer periods of months to years. Complications such as heart arrhythmias, cardiac contractile function impairment, sudden death, osteoporosis, kidney damage, increased cancer risk, impairment of physical activity and lipid abnormalities can all be linked to long-term restriction of carbohydrates in the diet. The need to further explore and communicate the untoward side-effects of low-carbohydrate diets should be an important public health message from nutrition professionals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of a commercial sports drink on performance in high-intensity cycling was investigated. Nine well-trained subjects were asked to complete a set amount of work as fast as possible (time trial) following 24 h of dietary (subjects were provided with food, energy 57.4 ± 2.4 kcal/kg and carbohydrate 9.1 ± 0.4 g/kg) and exercise control. During exercise, subjects were provided with 14 mL/kg of either 6% carbohydrate-electrolyte (CHO-E) solution or carbohydrate-free placebo (P).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the effects of short- and long-term aerobic training on the stable up-regulation of pyruvate dehydrogenase (PDH) and PDH kinase (PDK) in human skeletal muscle. We hypothesized that 8 weeks, but not 1 week, of aerobic training would increase total PDH (PDHt) and PDK activities compared to pretraining, and this would be detectable at the level of gene transcription (mRNA) and/or gene translation (protein). Resting muscle biopsies were taken before and after 1 and 8 weeks of aerobic cycle exercise training. PDHt and PDK activities, and their respective protein and mRNA expression, did not differ after 1 week of aerobic training. PDHt activity increased 31% after 8 weeks and this may be partially due to a 1.3-fold increase in PDH-E1α protein expression. PDK activity approximately doubled after 8 weeks of aerobic training and this was attributed to a 1.3-fold increase in PDK2 isoform protein expression. Similar to 1 week, no changes were observed at the mRNA level after 8 weeks of training. These findings  suggest that aerobically trained human skeletal muscle has an increased maximal capacity to utilize carbohydrates, evident by increased PDHt, but increased metabolic control sensitivity to pyruvate through increased contribution of PDK2 to total PDK activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On Christmas Island, Indian Ocean, the diet of robber crabs, Birgus latro (Linnaeus) was generally high in fat, storage polysaccharides or protein and largely comprised fruits, seeds, nuts and animal material. The plant items also contained significant amounts of hemicellulose and cellulose. In laboratory feeding trials, crabs had similar intakes of dry matter when fed artificial diets high in either fat or storage polysaccharide, but intake was lower on a high protein diet. Assimilation coefficients of dry matter (69–74%), carbon (72–81%), nitrogen (76–100%), lipid (71–96%) and storage polysaccharide (89–99%) were high on all three diets. B. latro also assimilated significant amounts of the chitin ingested in the high protein diet ( 93%) and hemicellulose (49.6–65%) and cellulose (16–53%) from the high carbohydrate and high fat diets. This is consistent with the presence of chitinase, hemicellulase and cellulase enzymes in the digestive tract of B. latro. The mean retention time (27.2 h) for a dietary particle marker (57Co-labelled microspheres) was longer than measured in leaf-eating land crabs. The feeding strategy of B. latro involves the selection of highly digestible and nutrient-rich plant and animal material and retention of the digesta for a period long enough to allow extensive exploitation of storage carbohydrates, lipids, protein and significant amounts of structural carbohydrates (hemicellulose, cellulose and chitin).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects were compared of exercise in the fasted state and exercise with a high rate of carbohydrate intake on intramyocellular triglyceride (IMTG) and glycogen content of human muscle. Using a randomized crossover study design, nine young healthy volunteers participated in two experimental sessions with an interval of 3 weeks. In each session subjects performed 2 h of constant-load bicycle exercise (∼75% VO2max ), followed by 4 h of controlled recovery. On one occasion they exercised after an overnight fast (F), and on the other (CHO) they received carbohydrates before (∼150 g) and during (1 g (kg bw)−1 h−1) exercise. In both conditions, subjects ingested 5 g carbohydrates per kg body weight during recovery. Fibre type-specific relative IMTG content was determined by Oil red O staining in needle biopsies from m. vastus lateralis before, immediately after and 4 h after exercise. During F but not during CHO, the exercise bout decreased IMTG content in type I fibres from 18 ± 2% to 6 ± 2% (P= 0.007) area lipid staining. Conversely, during recovery, IMTG in type I fibres decreased from 15 ± 2% to 10 ± 2% in CHO, but did not change in F. Neither exercise nor recovery changed IMTG in type IIa fibres in any experimental condition. Exercise-induced net glycogen breakdown was similar in F and CHO. However, compared with CHO (11.0 ± 7.8 mmol kg−1 h−1), mean rate of postexercise muscle glycogen resynthesis was 3-fold greater in F (32.9 ± 2.7 mmol kg−1 h−1, P= 0.01). Furthermore, oral glucose loading during recovery increased plasma insulin markedly more in F (+46.80 μU ml−1) than in CHO (+14.63 μU ml−1, P= 0.02). We conclude that IMTG breakdown during prolonged submaximal exercise in the fasted state takes place predominantly in type I fibres and that this breakdown is prevented in the CHO-fed state. Furthermore, facilitated glucose-induced insulin secretion may contribute to enhanced muscle glycogen resynthesis following exercise in the fasted state.